
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)490

INTRODUCTION

Motivation
In many instances, programs are concerned only with

processing or manipulating data and displaying them
to a user, who becomes the agent that ends up taking
physical action. However, in some instances, we create
software to control other analog devices or machin-

491

tems. However, a hybrid system contains the interface
between these two domains and requires new logics.

Formal Methods
To guarantee that the control algorithm predictably

influences the machinery with which it interacts, we
need to develop hybrid logics that are tailored to include
both models of discrete programs as well as the continu-
ous equations that govern the analog components.

Engineers can write code to model a hybrid system
and then run these models with particular inputs to see
how the system behaves. However, at best, this approach
affords only the equivalent of evaluating individual test
cases, which cannot guarantee the exploration of impor-
tant corner cases, nor always eliminate unexpected
behavior.

Y.  KOUSKOULAS,  A.  PLATZER,  AND  P.  KAZANZIDES

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)492

article, even though more advanced controls turn out to
be necessary.7

To create a model of a cyber-physical system by using
dL, we write a HP in dL modeling language. The lan-
guage in which we write HPs to model cyber-physical
systems is not designed to be executed but to be formally
reasoned about; its syntactic constructs are simpler than
what we find in executable languages today and are
shown in Table 1.

The HP language used in dL contains arithmetic
operators, assignments, and sequential composition of
statements and assertions—operations that are found in
many imperative languages. State variables in the pro-
gram can have types that are discrete, finite sets, or R,
the reals.

To write a conditional statement in this language, we

FORMAL METHODS FOR ROBOTIC SYSTEM CONTROL SOFTWARE

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 493

the statements describe discrete computations and state
changes inside a computer and have no real time associ-
ated with them. It is as if when discrete statements are
encountered in sequence, the continuous dynamics of the
system are “frozen,” and when the system encounters a
dynamics statement, discrete computation ceases and the
continuous dynamics evolve.

Despite the apparent stop-and-go nature of the
dynamics in this model, it is effective at modeling a
system that is doing discrete computations as the con-
tinuous dynamics evolve. In the real world, discrete
computations and continuous dynamics operate concur-
rently, but the HP forces us to linearize them, putting
them into a sequential order. We conceptually associate
the period of time in which the physics evolved to be
concurrent with the discrete computation that preceded
it in the program. Within the HP, the discrete program
and the continuous physics can share state at the edges
of these linearized transitions, as shown in Fig. 2.

Y.  KOUSKOULAS,  A.  PLATZER,  AND  P.  KAZANZIDES

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)494

ment that  holds for all values of x). We also can write
modal operators (e.g., [] means that after running the
HP , the predicate  always holds). The modal opera-
tors are very powerful because they allow a sort of quan-
tification over different executions of a given program,
and they are at the core of how we describe properties of
hybrid models of cyber-physical systems.

We write the safety property we desire to prove for
our algorithm as

	 (p >= 0) → [ctrl](p >= 0).	 (6)

This predicate is called our goal, or the theorem that we
wish to prove. It says: if the tool starts in a safe place (i.e.,
p >= 0) and you run the control program, then the tool
will remain in a safe place at every instant of time, no
matter what input you provide for it.

To do the proof, we apply sound inference rules to our
goal, decomposing it into simpler goals and eventually
statements in real arithmetic. This real arithmetic can
be solved by a computer program called a decision pro-
cedure. This proving process is the heart of dL; the logic
is constructed so that completing such proofs translates
into a guarantee about the system’s behavior, for all pos-
sible system inputs.

The proof will be structured the same way as the
model, first decomposing the outer loop into three dif-
ferent subgoals: the base case, the inductive step, and the
postcondition. Within the proof of the inductive step,
there are three cases, one for each possible nondeter-
ministic choice represented by the dynamics statements.
The differential equation must be solved for each one,
and the proof about the inductive step can be completed.

KeYmaera8 is a tool that takes a HP and allows an
engineer to create a machine-checked proof by using .dL
This is called a mechanization of the logic. This system
is simple enough that once the HP model and safety
property are entered, a loop invariant can be provided,
and safety for this simplified 1-D system can be proved
automatically at the press of a button. A loop invari-
ant is a logical statement that describes an important,
unchanging attribute that will hold at the beginning

and end of a loop; it is necessary
to resolve the behavior of compli-
cated loops automatically.

A Generalized Model of a Single
Virtual Fixture Boundary

The simplified model represents
input as a constant during a time
step and does not accurately repre-
sent a lag in the system. It assumes
that the program that implements
the controller runs all the time. It

also fixes the position of the virtual boundary and pro-
vides control in only one dimension. Although these
simplifying assumptions were a useful starting point, we
need to replace them with more realistic assumptions to
ensure that our conclusions are true. This section refines
the previous model to relax these assumptions and create
a more realistic controller in two dimensions.

The first enhancement to the model will be a more
accurate representation of user input. The previous
model represented user input for each “step” in the
system as a constant, by setting the force components
to a nondeterministic value by writing fx := *; fy := *.
A more accurate model of the force input to the system
would be to create a piecewise linear representation of
the force. To do this, we assign nondeterministic values
to some state variables, fxp := *; fyp := *, and then logi-
cally associate these with the derivative of the force by
requiring f f f fandx xp py y= =l l in the set of differential
equations that we specify during continuous evolution.
When we make this change, it ensures that at each step,
we have a constant acceleration. This makes our veloc-
ity piecewise linear and our path quadratic, given the
simple relationship between these state variables. Con-
sequently, there are many additional possible types of
force curves that can be exerted on the system during a
time step, depending on the acceleration and the initial
direction of the force during the step. We can distinguish
between these different types of curves and design our
controller to recognize and behave differently in each
situation. The different movement scenarios are shown
in Fig. 3. Each subfigure represents a movement scenario
in which the SBS robot must enforce safety. Each case
must start above the x axis because the system starts in

Y.  KOUSKOULAS,  A.  PLATZER,  AND  P.  KAZANZIDES

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)496

tance controller, which should not change regardless of
the mode the system is in or the damping decision made
by the control algorithm.

A more realistic model of our control algorithm that
includes these enhancements is shown in Table 3. This
algorithm enforces a single virtual boundary based on
the subtractive control law given in Eq. 2. The subtrac-
tive control law works by modifying the overall velocity
by subtracting the part of the vector out of the move-
ment that is normal to the virtual boundary. This
boundary should feel abrupt; it is encountered with no
warning, so the surgeon needs another way of visualizing
how close to it he or she is. When pressed against it, the
tool will tend to bounce back slightly, giving the bound-
ary a bouncy feel. This comes from a combination of the
subtractive control law and the system’s delay.

The user should not experience any of the stickiness
we expect from the control algorithms produced by mul-
tiplicative damping strategies (i.e., those strategies that
modify the overall velocity by applying a multiplica-

tive factor less than 1), but instead
the virtual boundary will feel some-
what slippery because of the selective
removal of the movement component
in the direction of the boundary.

Proving Safety of an Enhanced
Model of a Control Algorithm

We implemented the realistic
model of our controller and proved
its safety using KeYmaera. We can
trust KeYmaera because it faithfully

FORMAL METHODS FOR ROBOTIC SYSTEM CONTROL SOFTWARE

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 497

FURTHER WORK

Y.  KOUSKOULAS,  A.  PLATZER,  AND  P.  KAZANZIDES

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)498

REFERENCES

  1Fränzle, M., and Herde, C., “HySAT: An Efficient Proof Engine for
Bounded Model Checking of Hybrid Systems,” Formal Methods in
System Design 30(2), 179–198 (2007).

  2Platzer, A., “Differential-Algebraic Dynamic Logic for Differential-
Algebraic Programs,” J. Log. Comput. 20(1), 309–352 (2010).

  3Platzer, A., “A Complete Axiomatization of Quantified Differential
Dynamic Logic for Distributed Hybrid Systems,” Logical Methods in
Computer Science 8(4), 1–44 (2012).

  4Platzer, A., “Differential Dynamic Logic for Hybrid Systems,” J.
Autom. Reasoning 41(2), 143–189 (2008).

  5Xia, T., Baird, C., Jallo, G., Hayes, K., Nakajima, N., et al. “An Inte-
grated System for Planning, Navigation and Robotic Assistance for
Skull Base Surgery,” Int. J. of Med. Robot. 4(4), 321–330 (2008).

  6Kazanzides, P., “Virtual Fixture Computation. Note on Combining
the Effects of Multiple Virtual Fixtures” (2011). [Please contact author
to obtain a copy of document.]

  7Kouskoulas, Y., Renshaw, D., Platzer, A., and Kazanzides, P., “Certi-
fying the Safe Design of a Virtual Fixture Control Algorithm for a
Surgical Robot,” in Proc. 16th International Conf. on Hybrid Systems:
Computation and Control, pp. 263–272 (2013).

  8Platzer, A., and Quesel, J.-D., “KeYmaera: A Hybrid Theorem Prover
for Hybrid Systems,” in Automated Reasoning: 4th Int. Joint Conf., Vol.
5195 of LNCS, A. Armando, P. Baumgartner, and G. Dowek (eds.),
SpringerVerlag, Berlin Heidelberg, pp. 171–178 (2008).

the boundary. This work is detailed in Ref. 7 and was
proved for arbitrarily many boundaries.

CONCLUSION

We have powerful tools available today to reason
about cyber-physical systems. With them, we can create
an accurate model of a cyber-physical system component
and make guarantees about the system’s behavior under
all possible input conditions.

These tools are new, and it is sometimes difficult
to apply them to larger, more complicated system
components because the proof becomes commensurately
more complex.

Along with investigating many other advances in
proof automation in KeYmaera, we are in the process of
exploring how to effectively scale these capabilities to
larger systems and how to compose proofs about small
system components together to make guarantees about
larger subsets of the system.

Yanni Kouskoulas

yanni.kouskoulas@jhuapl.edu

	Formal Methods for Robotic System Control Software
	Yanni Kouskoulas, André Platzer, and Peter Kazanzides
	INTRODUCTION
	Motivation
	Formal Methods

	SKULL-BASE SURGERY ROBOT
	MODELING A SURGICAL ROBOT CONTROL ALGORITHM
	Simple Model
	Proving Safety of the Simplified Model of a Control Algorithm
	A Generalized Model of a Single Virtual Fixture Boundary
	Proving Safety of an Enhanced Model of a Control Algorithm

	FURTHER WORK
	CONCLUSION
	REFERENCES
	 The Authors
	Figures and Tables
	Figure 1. Cooperatively controlled robot enforcing virtual fixtures.
	Figure 2. Illustration of the HP strategy.
	Figure 3. Different movement scenarios in which the SBS robot must enforce safety.
	Figure 4. KeYmaera tool displaying intermediate proof state and major branches for surgical robot control algorithm safety proof.
	Figure 5. KeYmaera tool displaying completed proof of safety for surgical robot control algorithm.
	Table 1. dL modeling language.
	Table 2. Different operators available in dL to express behavior.
	Table 3. A complete time-triggered model of a redesigned control algorithm.

