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INTRODUCTION

Motivation
In many instances, programs are concerned only with 

processing or manipulating data and displaying them 
to a user, who becomes the agent that ends up taking 
physical action. However, in some instances, we create 
software to control other analog devices or machin-
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tems. However, a hybrid system contains the interface 
between these two domains and requires new logics.

Formal Methods
To guarantee that the control algorithm predictably 

influences the machinery with which it interacts, we 
need to develop hybrid logics that are tailored to include 
both models of discrete programs as well as the continu-
ous equations that govern the analog components.

Engineers can write code to model a hybrid system 
and then run these models with particular inputs to see 
how the system behaves. However, at best, this approach 
affords only the equivalent of evaluating individual test 
cases, which cannot guarantee the exploration of impor-
tant corner cases, nor always eliminate unexpected 
behavior.
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article, even though more advanced controls turn out to 
be necessary.7

To create a model of a cyber-physical system by using 
dL, we write a HP in dL modeling language. The lan-
guage in which we write HPs to model cyber-physical 
systems is not designed to be executed but to be formally 
reasoned about; its syntactic constructs are simpler than 
what we find in executable languages today and are 
shown in Table 1.

The HP language used in dL contains arithmetic 
operators, assignments, and sequential composition of 
statements and assertions—operations that are found in 
many imperative languages. State variables in the pro-
gram can have types that are discrete, finite sets, or R, 
the reals.

To write a conditional statement in this language, we 
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the statements describe discrete computations and state 
changes inside a computer and have no real time associ-
ated with them. It is as if when discrete statements are 
encountered in sequence, the continuous dynamics of the 
system are “frozen,” and when the system encounters a 
dynamics statement, discrete computation ceases and the 
continuous dynamics evolve.

Despite the apparent stop-and-go nature of the 
dynamics in this model, it is effective at modeling a 
system that is doing discrete computations as the con-
tinuous dynamics evolve. In the real world, discrete 
computations and continuous dynamics operate concur-
rently, but the HP forces us to linearize them, putting 
them into a sequential order. We conceptually associate 
the period of time in which the physics evolved to be 
concurrent with the discrete computation that preceded 
it in the program. Within the HP, the discrete program 
and the continuous physics can share state at the edges 
of these linearized transitions, as shown in Fig. 2.



Y.  KOUSKOULAS,  A.  PLATZER,  AND  P.  KAZANZIDES

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)494

ment that  holds for all values of x). We also can write 
modal operators (e.g., [] means that after running the 
HP , the predicate  always holds). The modal opera-
tors are very powerful because they allow a sort of quan-
tification over different executions of a given program, 
and they are at the core of how we describe properties of 
hybrid models of cyber-physical systems.

We write the safety property we desire to prove for 
our algorithm as

	 (p >= 0) → [ctrl](p >= 0).	 (6)

This predicate is called our goal, or the theorem that we 
wish to prove. It says: if the tool starts in a safe place (i.e., 
p >= 0) and you run the control program, then the tool 
will remain in a safe place at every instant of time, no 
matter what input you provide for it.

To do the proof, we apply sound inference rules to our 
goal, decomposing it into simpler goals and eventually 
statements in real arithmetic. This real arithmetic can 
be solved by a computer program called a decision pro-
cedure. This proving process is the heart of dL; the logic 
is constructed so that completing such proofs translates 
into a guarantee about the system’s behavior, for all pos-
sible system inputs.

The proof will be structured the same way as the 
model, first decomposing the outer loop into three dif-
ferent subgoals: the base case, the inductive step, and the 
postcondition. Within the proof of the inductive step, 
there are three cases, one for each possible nondeter-
ministic choice represented by the dynamics statements. 
The differential equation must be solved for each one, 
and the proof about the inductive step can be completed.

KeYmaera8 is a tool that takes a HP and allows an 
engineer to create a machine-checked proof by using .dL  
This is called a mechanization of the logic. This system 
is simple enough that once the HP model and safety 
property are entered, a loop invariant can be provided, 
and safety for this simplified 1-D system can be proved 
automatically at the press of a button. A loop invari-
ant is a logical statement that describes an important, 
unchanging attribute that will hold at the beginning 

and end of a loop; it is necessary 
to resolve the behavior of compli-
cated loops automatically.

A Generalized Model of a Single 
Virtual Fixture Boundary

The simplified model represents 
input as a constant during a time 
step and does not accurately repre-
sent a lag in the system. It assumes 
that the program that implements 
the controller runs all the time. It 

also fixes the position of the virtual boundary and pro-
vides control in only one dimension. Although these 
simplifying assumptions were a useful starting point, we 
need to replace them with more realistic assumptions to 
ensure that our conclusions are true. This section refines 
the previous model to relax these assumptions and create 
a more realistic controller in two dimensions.

The first enhancement to the model will be a more 
accurate representation of user input. The previous 
model represented user input for each “step” in the 
system as a constant, by setting the force components 
to a nondeterministic value by writing fx := *; fy := *. 
A more accurate model of the force input to the system 
would be to create a piecewise linear representation of 
the force. To do this, we assign nondeterministic values 
to some state variables, fxp := *; fyp := *, and then logi-
cally associate these with the derivative of the force by 
requiring f f f fandx xp py y= =l l  in the set of differential 
equations that we specify during continuous evolution. 
When we make this change, it ensures that at each step, 
we have a constant acceleration. This makes our veloc-
ity piecewise linear and our path quadratic, given the 
simple relationship between these state variables. Con-
sequently, there are many additional possible types of 
force curves that can be exerted on the system during a 
time step, depending on the acceleration and the initial 
direction of the force during the step. We can distinguish 
between these different types of curves and design our 
controller to recognize and behave differently in each 
situation. The different movement scenarios are shown 
in Fig. 3. Each subfigure represents a movement scenario 
in which the SBS robot must enforce safety. Each case 
must start above the x axis because the system starts in 
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tance controller, which should not change regardless of 
the mode the system is in or the damping decision made 
by the control algorithm.

A more realistic model of our control algorithm that 
includes these enhancements is shown in Table 3. This 
algorithm enforces a single virtual boundary based on 
the subtractive control law given in Eq. 2. The subtrac-
tive control law works by modifying the overall velocity 
by subtracting the part of the vector out of the move-
ment that is normal to the virtual boundary. This 
boundary should feel abrupt; it is encountered with no 
warning, so the surgeon needs another way of visualizing 
how close to it he or she is. When pressed against it, the 
tool will tend to bounce back slightly, giving the bound-
ary a bouncy feel. This comes from a combination of the 
subtractive control law and the system’s delay.

The user should not experience any of the stickiness 
we expect from the control algorithms produced by mul-
tiplicative damping strategies (i.e., those strategies that 
modify the overall velocity by applying a multiplica-

tive factor less than 1), but instead 
the virtual boundary will feel some-
what slippery because of the selective 
removal of the movement component 
in the direction of the boundary.

Proving Safety of an Enhanced 
Model of a Control Algorithm

We implemented the realistic 
model of our controller and proved 
its safety using KeYmaera. We can 
trust KeYmaera because it faithfully 
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FURTHER WORK
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the boundary. This work is detailed in Ref. 7 and was 
proved for arbitrarily many boundaries.

CONCLUSION

We have powerful tools available today to reason 
about cyber-physical systems. With them, we can create 
an accurate model of a cyber-physical system component 
and make guarantees about the system’s behavior under 
all possible input conditions.

These tools are new, and it is sometimes difficult 
to apply them to larger, more complicated system 
components because the proof becomes commensurately 
more complex.

Along with investigating many other advances in 
proof automation in KeYmaera, we are in the process of 
exploring how to effectively scale these capabilities to 
larger systems and how to compose proofs about small 
system components together to make guarantees about 
larger subsets of the system.
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