
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013) 509

he Linux Kernel Integrity Measurer (LKIM) is a next-generation technology 
for the detection of malicious modifications to a running piece of software. 

Unlike traditional antivirus systems, LKIM does not rely on a database of 
known malware signatures; instead, LKIM uses a precise model of expected program 
behavior to verify the consistency of critical data structures at runtime. APL and the 
Research Directorate of the National Security Agency (NSA) developed the LKIM pro-
totype and are now working to transition the technology to a variety of critical govern-
ment applications.

LKIM: The Linux Kernel Integrity Measurer

J. Aaron Pendergrass and Kathleen N. McGill

cuting software is behaving consistently with its static 
definition. Although dynamic integrity measurement 
cannot guarantee that software is trustworthy in the 
sense of not being exploitable, it is able to establish that 
any assurance gained by static analysis is maintained by 
the executing software.

The Linux Kernel Integrity Measurer (LKIM) is an 
implementation of a dynamic measurement technique 
targeting the Linux operating system kernel. Unlike 
most other systems for malware detection, dynamic 
integrity measurement systems (IMSs) such as LKIM 
do not rely on a database of known malware signa-
tures. This means that LKIM is able to detect previ-
ously unknown “zero-day” malware. Although LKIM 
was originally developed to verify the integrity of the 
Linux kernel, researchers in the Asymmetric Operations 
Department of APL have reconfigured LKIM to target 

INTRODUCTION



J. A.  PENDERGRASS  AND  K. N.  MCGILL

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)510

the state of a piece of software (referred to as a target). 
This evidence is presented to the DM in a process called 
attestation that supports the trustworthy evaluation of 
the target’s state. The DM is responsible for evaluating 



511

legacy systems and does make it somewhat more difficult 
for rootkits to hide.

It is impossible to develop a measurement system with 
no impact on the target. Any measurement engine run-
ning on the same hardware as the target will have to 
compete for the finite computational resources avail-
able, such as processor time or memory. We have made 
efforts to minimize the impact LKIM poses on the target 
both by optimizing LKIM’s code to reduce its use of these 
resources and by leveraging architectural features such 
as VM snapshotting to avoid activities such as pausing 
the target for long periods of time. Beyond these perfor-
mance impacts, a measurement system may impact the 
development or deployment of updated targets. LKIM 
requires a precise description of the data structures used 
by the software it is measuring. This means that legiti-
mate updates to the target may cause LKIM to become 
confused and generate false alarms. We partially address 
this problem by separating the target-dependent aspects 
of LKIM into a configuration file that should be deployed 
in sync with updates to the target software. This solution 
imposes some management cost to deploying LKIM; we 
are working in pilot deployments to better understand 
how high this cost is and how it can be best addressed 
(see the LKIM Transition section for more detail).

HOW LKIM WORKS
Although LKIM provides a generic measurement 

capability, the majority of work on applying LKIM has 
focused on the Linux kernel itself. This section provides 
an overview of LKIM’s measurement algorithm using 
the configuration developed for the Linux kernel as 
an example. Efforts to retarget LKIM to measure other 
software, including other operating system kernels and 
application-level software, have followed the same pro-
cess with minor changes to account for differences in file 
formats and software architecture.

LKIM divides the task of verifying the Linux kernel’s 
integrity into three distinct phases:

•	 Static baselining: the identification of valid pro-
gram states

•	 Measurement: the collection of evidence

•	 Appraisal: the evaluation of the collected evidence 
against the baseline

Figure  1 indicates how these three phases work 
together to determine the integrity of the system. The 
baselining phase combines an expert understanding of 
the Linux kernel’s behavior with information found in 
the kernel’s executable file. The measurement phase 
inspects the state of a running instance of the kernel 
to summarize those aspects of its state relevant to the 
integrity decision; this summary constitutes a “measure-
ment” of the running kernel’s state. The appraisal phase 

advantageous. The exact frequency with which to run 
LKIM is still an open research question. Because LKIM’s 
results represent only a moment in time, a long time 
period between measurements may allow an adversary 
to break into a system, accomplish his mission, and 
restore the kernel’s integrity without causing a failed 
measurement. In some sense, any window is too long 
because some adversary missions, such as stealing cryp-
tographic keys, may be accomplished in microseconds. 
A recommended practice is to perform a fresh LKIM 
measurement as part of an access control decision such 
as network access control. This scheme allows the access 
control policy to make its decision on the basis of fresh 
evidence, without unduly burdening the target.

Integrity measurement data may be as complex as a 



J. A.  PENDERGRASS  AND  K. N.  MCGILL

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)512



513



J. A.  PENDERGRASS  AND  K. N.  MCGILL

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)514

Appraisal
The appraisal phase consumes these data and com-

pares them with data computed from the on-disk rep-
resentation of the kernel to determine whether the 
observed state is consistent with the original file. This 
determination relies on an expert understanding of how 
the kernel operates. Ultimately, LKIM provides a result 
indicating either that no modifications were detected or 
exactly which data in the kernel have been modified in 
an unexpected way.

LKIM’s appraisal phase is specified as a series of logi-
cal predicates that are evaluated over both the baseline 
and measurement graphs. These predicates can refer to 
the graph node representing data at a particular address 
in memory, all nodes representing data of a particular 
type, or the relationships among multiple graph nodes. 
In the example given in Fig. 2, an example constraint 
is that “all read function nodes that descend from the 
given file system node must point to the correct execut-
able code for reading a file from that FileSystem.”



515

of challenges to LKIM, and we hope to ease the integra-
tion of LKIM as we gain operational experience.



J. A.  PENDERGRASS  AND  K. N.  MCGILL

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 (2013)516

mailto:aaron.pendergrass@jhuapl.edu

	LKIM: The Linux Kernel Integrity Measurer
	J. Aaron Pendergrass and Kathleen N. McGill
	INTRODUCTION
	MEASUREMENT PROPERTIES
	HOW LKIM WORKS
	Static Baselining
	Measurement
	Appraisal

	IMPACT OF LKIM
	LKIM TRANSITION
	CONCLUSIONS AND FUTURE WORK
	REFERENCE
	The Authors
	Figures and Tables
	Figure 1. The LKIM system consists of three components.
	Figure 2. A graph representing a subset of the data structures active at the time of measurement.
	Table 1. The set of rules that might have given rise to the graph shown in Fig. 2
	Table 2. Common appraisal constraints, and their associated measurement data, used by LKIM





