
517

INTRODUCTION
Computing devices are increasingly relied on to store, 

manipulate, transmit, and visualize data. This reliance 
extends to nearly all aspects of modern society, from 
individuals who rely on their smartphones to always be 
at their fingertips to organizations with vast networks 
and racks of servers that must always be fully functional. 
Such reliance poses a great risk in the event that the 
software components of these devices are not operating 
as expected or required. Alterations to device software, 
which may occur either by accident or malice, bring into 
doubt the integrity of the software. A piece of software 
(e.g., a running process) is said to have integrity if it 
runs without improper system alterations.1 Stakehold-

ers would like to base their decisions on the operational 
integrity of the relevant running software. For example, 
a user may wish to know that there is no keyboard logger 
on a system before entering a password; a network access 
control point may wish to validate that only authorized 
computers may gain access to the network.

Previous work has shown that it is possible to measure 
software as it is loaded. These load-time systems (e.g., 
Refs. 2 and 3) are typically based on computing a cryp-
tographic hash of the program image. However, these 



M.�A.  THOBER,  J.�A.  PENDERGRASS,  AND  A.�D.  JURIK

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 �2013�518

1: public User authenticate(Auth auth) {
2: String user = auth.getUsername();
3: String password = auth.getPassword();
4: SendToURL(“attacker.com”,user+password);
5: ...
6: }

The code on line 4 has been inserted to forward the 
user’s access credentials to a remote server. This integrity 
violation can clearly lead to a complete access control 
failure of a system because now an attacker could log in 
to a remote system that accepts these credentials.

Certainly, modifying the executable code of a process 
can cause great damage. Indeed, this is the purpose of 
many rootkits and trojan malware. However, an attacker 
can also cause great damage solely by modifying criti-
cal data within a process (as illustrated by the red circles 
in Fig. 1



ENSURING THE INTEGRITY OF RUNNING JAVA PROGRAMS

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 �2013� 519

•	 Java bytecode running in the JVM is as expected.

•	



M.�A.  THOBER,  J.�A.  PENDERGRASS,  AND  A.�D.  JURIK

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 �2013�520

based on the specification and qualifier. Specifications, 
spec, describe the types of objects on the heap to which 
the policy applies. Specifications are empty (), a univer-
sally quantified object type (read for all objects o of type  
that are contained in heap H), an existentially quantified 
object type (read there exists an object o of type  that 



ENSURING THE INTEGRITY OF RUNNING JAVA PROGRAMS

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 �2013� 521

flexibility in that any number of different policies may 
be written for the same application, based on the needs 
of the appraiser. Inline monitoring approaches such as 
Monitoring-Oriented Programming (MOP)8 lack such 
flexibility and require recompilation of the source code 
to embed the monitor in the application.

Writing accurate integrity policies remains the 
responsibility of the policy writer, and JMF is not 
intended to determine whether a policy is the best policy 
for a given program. However, we do aim to provide a 
useful mechanism to help programmers write maintain-
able integrity policies for their programs.

Simple Example Policy
We now present a simple example policy to show how 

a useful policy is written. Realistic policies written on real 
Java applications are discussed in the Evaluation section.

The following policy (and corresponding function 
definition) states that every object of type LinkedList 
must have the same number of nodes on the list as stated 
by the size field in the object, except when the add or 
remove methods are in the process of manipulating 
the list. (The Java LinkedList class includes other 



M.�A.  THOBER,  J.�A.  PENDERGRASS,  AND  A.�D.  JURIK

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 �2013�522

Appraisal
The appraiser consists of two separate components: 

the measurement appraiser generated by the policy com-
piler that verifies the integrity of the heap and stack 
dumps and a class appraiser that verifies the integrity of 
the loaded classes. The policy compiler takes a policy as 



ENSURING THE INTEGRITY OF RUNNING JAVA PROGRAMS

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 �2013� 523

ensure that only valid client programs are running and 
no poker bots are being used. These kinds of client/server 
trust requirements are increasingly common, as in mul-
tiuser online gaming, financial software, and beyond. 
We believe our system, when paired with a proper attes-
tation protocol, can have wide applicability to client/
server trust relationships.

Apache FtpServer
Apache FtpServer17 is an open-source FTP 

server written in Java. An important property of 
the FTP server is that all the user account infor-
mation should be as expected and not be modi-
fied. The PropertiesUserManager 



M.�A.  THOBER,  J.�A.  PENDERGRASS,  AND  A.�D.  JURIK

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 �2013�524

deviations are small relative to the sample mean values. 
For example, on average across the set of experiments, 



ENSURING THE INTEGRITY OF RUNNING JAVA PROGRAMS

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 �2013� 525

resenting data structures in a model, and our policies are 
described directly over the program source code.

Integrity measurement as described is closely related 
to a significant body of work on invariant monitoring; 
Delgado et  al.,21 for example, present an overview of 
software-fault monitoring tools, and Parno et al.22 cat-



M.�A.  THOBER,  J.�A.  PENDERGRASS,  AND  A.�D.  JURIK

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 �2013�526

http://code.google.com/p/bluffin-muffin/
http://code.google.com/p/bluffin-muffin/
http://openjdk.java.net/


ENSURING THE INTEGRITY OF RUNNING JAVA PROGRAMS

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 2 �2013� 527

24Zee, K., Kuncak, V., Taylor, M., and Rinard, M., “Runtime Check-
ing for Program Verification,” in Proc. International Conf. on Runtime 
Verification (RV), Vancouver, Canada, pp. 202–213 (2007).

25Kim, M., Kannan, S., Lee, L., Sokolsky, O., and Viswanathan, M., 
“Java-MaC: A Run-Time Assurance Tool for Java Programs,” Elec-
tron. Notes Theor. Comput. Sci. 55(2), 129–155 (2001).

26Haldar, V., Chandra, D., and Franz, M., “Semantic Remote Attesta-
tion: A Virtual Machine Directed Approach to Trusted Computing,” 
in Proc. 3rd Conf. on Virtual Machine Research and Technology Symp., 
Vol. 3, Berkeley, CA, pp. 29–41 (2004).

27Baliga, A., Ganapathy, V., and Iftode, L., “Automatic Inference and 
Enforcement of Kernel Data Structure Invariants,” in 

http://jakarta.apache.org/bcel/
http://mina.apache.org/ftpserver-project/
http://mina.apache.org/ftpserver-project/

	Ensuring the Integrity of Running Java Programs
	Mark A. Thober, J. Aaron Pendergrass, and Andrew D. Jurik
	INTRODUCTION
	Motivation
	Overview
	Adversary Model
	Java Measurement Framework

	DESIGN AND IMPLEMENTATION
	Integrity Policies
	Simple Example Policy
	Baseline Policies
	Measurement
	Appraisal

	EVALUATION
	bluffin-muffin
	Apache FtpServer
	Performance
	Performance Results

	DISCUSSION
	Related Work
	Measurement versus Monitoring
	Future Work

	REFERENCES
	 The Authors
	Figures
	Figure 1. Notional depiction of runtime program modification.
	Figure 2. Screenshot of bluffin-muffin ppoker game.
	Figure 3. Execution environment. 
	Figure 4. JMF system diagram. 
	Figure 5. Integrity policy syntax.
	Policy A.
	Policy B.
	Figure 6. fork_op on (modified) target JVM.
	Figure 7. bluffin-muffin card uniqueness policy.
	Figure 8. FTP server policy.
	Figure 9. Execution times of the DaCapo benchmarks when the amount of delay between measurements varied.



